Performance Assessment of Remote Sensing and Empirical Evaporation Models in Lake Urmia

Authors
1 M.Sc. Graduate of Water Resources Engineering and Management Department, Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran.
2 Associate professor, Water Resources Engineering and Management Department, Faculty of Civil Engineering, K. N. Toosi University of Technology
Abstract
Evaporation serves as a significant factor in the hydrological deficit experienced by Lake Urmia, thereby exerting a vital influence on its overall water equilibrium. The evolution of satellite sensor technology has facilitated the acquisition of a comprehensive range of satellite imagery, underscoring the necessity for meticulous evaluation in the assessment of lake evaporation. This research endeavor is designed to quantify daily evaporation rates from Lake Urmia through the integration of Landsat 8 and 9 imagery from the year 2022, while concurrently assessing the efficacy of physical, empirical, and remote sensing methodologies. A comprehensive analysis was conducted on a total of 21 satellite images, wherein the FAO56-PM, Priestley-Taylor, and Hargreaves-Samani models, in conjunction with the remote sensing techniques of the Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration at High Resolution and with Internalized Calibration (METRIC), were executed within the Google Earth Engine (GEE) framework. The resultant model outputs were corroborated against pan evaporation data obtained from the Urmia meteorological station, which served as the reference ground truth dataset. The analysis indicated that SEBAL, when utilized without a correction factor, exhibited superior accuracy, achieving a Root Mean Square Error (RMSE) of 0.83 mm/day and a Nash-Sutcliffe Efficiency (NSE) value of 0.48. Upon the implementation of a correction factor, the FAO56-PM model produced optimal outcomes, with an RMSE of 1.04 mm/day and an NSE of 0.18. In summary, SEBAL surpassed the performance of the other models, attributable to its dependence on satellite-derived imagery. Moreover, the amalgamation of satellite data with empirical modeling approaches holds significant potential for enhancing water resource management strategies within the context of Lake Urmia.

Keywords

Subjects


قهرمان، ر.، و رحیم‌زادگان، م. (1401). بررسی کارایی روش‌های مختلف برآورد تبخیر با بهره‌گیری از داده های ماهواره ای در سطح آب شور (مطالعه موردی: دریاچه ارومیه). تحقیقات منابع آب ایران، 19(2)، 1-13. https://www.iwrr.ir/article_155070_a11bfacec536c63890bb1e087a864b66.pdf
Abdelrady, A., Timmermans, J., Vekerdy, Z., & Salama, M. S. (2016). Surface energy balance of fresh and saline waters: AquaSEBS. Remote Sensing, 8(7), Article 583. https://doi.org/10.3390/rs8070583
Allan, R., Pereira, L., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 (Vol. 56).
Allen, R., Morton, C., Kamble, B., Kilic, A., Huntington, J., Thau, D., Gorelick, N., Erickson, T., Moore, R., Trezza, R., Ratcliffe, I., & Robison, C. (2015). EEFlux: A landsat-based evapotranspiration mapping tool on the Google Earth Engine. Joint ASABE/IA Irrigation Symposium 2015: Emerging Technologies for Sustainable Irrigation,
Allen, R., Tasumi, M., Trezza, R., Waters, R., & Bastiaanssen, W. (2002). SEBAL. Surface energy balance algorithms for land. Idaho implementation, advanced training and users manual. Version 1.0. The Idaho Department of Water Resources: Boise, ID, USA. .
Allen, R. G., Tasumi, M., Morse, A., Trezza, R., Wright, J. L., Bastiaanssen, W., Kramber, W., Lorite, I., & Robison, C. W. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Model. Journal of Irrigation and Drainage Engineering, 133(4), 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 212-213(1-4), 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 85-93. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
Chen, J., Wang, Y., Wang, J., Zhang, Y., Xu, Y., Yang, O., Zhang, R., Wang, J., Wang, Z., Lu, F., & Hu, Z. (2024). The Performance of Landsat-8 and Landsat-9 Data for Water Body Extraction Based on Various Water Indices: A Comparative Analysis. Remote Sensing, 16(11), Article 1984. https://doi.org/10.3390/rs16111984
Craig, I. P. (2006). Comparison of precise water depth measurements on agricultural storages with open water evaporation estimates. Agricultural Water Management, 85(1-2), 193-200. https://doi.org/10.1016/j.agwat.2006.04.010
De Bruin, H. A. R., & Keijman, J. Q. (1979). The Priestley-Taylor evaporation model applied to a large, shallow lake in the Netherlands. Journal of Applied Meteorology, 18(7), 898-903. https://doi.org/10.1175/1520-0450(1979)018<0898:TPTEMA>2.0.CO;2
Drexler, J. Z., Snyder, R. L., Spano, D., & Paw U, K. T. (2004). A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrological Processes, 18(11), 2071-2101. https://doi.org/10.1002/hyp.1462
Fadel, A., Mhawej, M., Faour, G., & Slim, K. (2020). On the application of METRIC-GEE to estimate spatial and temporal evaporation rates in a mediterranean lake. Remote Sensing Applications: Society and Environment, 20, Article 100431. https://doi.org/10.1016/j.rsase.2020.100431
Gallego-Elvira, B., Baille, A., Martín-Gorriz, B., Maestre-Valero, J. F., & Martínez-Alvarez, V. (2012). Evaluation of evaporation estimation methods for a covered reservoir in a semi-arid climate (south-eastern Spain). Journal of Hydrology, 458-459, 59-67. https://doi.org/10.1016/j.jhydrol.2012.06.035
Ghahreman, R., & Rahimzadegan, M. (2022). Calculating net radiation of freshwater reservoir to estimate spatial distribution of evaporation using satellite images. Journal of Hydrology, 605, Article 127392. https://doi.org/10.1016/j.jhydrol.2021.127392
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031
Hargreaves, G., & Samani, Z. (1985). Reference Crop Evapotranspiration From Temperature. Applied Engineering in Agriculture, 1. https://doi.org/10.13031/2013.26773
Hashemi, M. (2008). An Independent Review : The Status of Water Resources in the Lake Urmia Basin. UNDP/GEF “Conservation of Iranian Wetlands” Project.
Jensen, M. E., & Allen, R. G. (2016). Evaporation, evapotranspiration, and irrigation water requirements. ASCE Manuals and Reports on Engineering Practice, 2016-January(70), 1-767.
Karimi, N., Bagheri, M. H., Hooshyaripor, F., Farokhnia, A., & Sheshangosht, S. (2016). Deriving and Evaluating Bathymetry Maps and Stage Curves for Shallow Lakes Using Remote Sensing Data. Water Resources Management, 30(14), 5003-5020. https://doi.org/10.1007/s11269-016-1465-9
Khaleghi, H., Rahimzadegan, M., & Ghahreman, R. (2025). Improving evaporation estimations over hypersaline water bodies using a factor based on total dissolved solids. Journal of Hydrology, 651, Article 132579. https://doi.org/10.1016/j.jhydrol.2024.132579
Laipelt, L., Henrique Bloedow Kayser, R., Santos Fleischmann, A., Ruhoff, A., Bastiaanssen, W., Erickson, T. A., & Melton, F. (2021). Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 81-96. https://doi.org/10.1016/j.isprsjprs.2021.05.018
Lindauer, J., Byers, S., Lehn, G., Evans, E., Castendyk, D., & Moravec, B. (2023). A review of methods to calculate current and future evaporation rates from pit lakes with high concentrations of total dissolved solids. Proceedings of the International Conference on Mine Closure,
McJannet, D. L., Webster, I. T., & Cook, F. J. (2012). An area-dependent wind function for estimating open water evaporation using land-based meteorological data. Environmental Modelling and Software, 31, 76-83. https://doi.org/10.1016/j.envsoft.2011.11.017
Mhawej, M., & Faour, G. (2020). Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environmental Modelling and Software, 133, Article 104845. https://doi.org/10.1016/j.envsoft.2020.104845
Oroud, I. M. (1994). Evaluation of saturation vapor pressure over hypersaline water bodies at the southern edge of the dead sea, Jordan. Solar Energy, 53(6), 497-503. https://doi.org/10.1016/0038-092X(94)90129-P
Priestley, C. H. B., & Taylor, R. J. (1972). On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Monthly Weather Review, 100(2), 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
Rahimpour, M., & Rahimzadegan, M. (2021). Assessment of surface energy balance algorithm for land and operational simplified surface energy balance algorithm over freshwater and saline water bodies in Urmia Lake Basin. Theoretical and Applied Climatology, 143(3-4), 1457-1472. https://doi.org/10.1007/s00704-020-03472-1
Rosenberry, D. O., Winter, T. C., Buso, D. C., & Likens, G. E. (2007). Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology, 340(3-4), 149-166. https://doi.org/10.1016/j.jhydrol.2007.03.018
Sene, K. J., Gash, J. H. C., & McNeil, D. D. (1991). Evaporation from a tropical lake: comparison of theory with direct measurements. Journal of Hydrology, 127(1-4), 193-217. https://doi.org/10.1016/0022-1694(91)90115-X
Sheibani, S., Ataie-Ashtiani, B., Safaie, A., & Mossa Hosseini, S. (2023). Coupled water and salt balance models for Lake Urmia: Salt precipitation and dissolution effects. Journal of Great Lakes Research, 49(3), 581-595. https://doi.org/10.1016/j.jglr.2023.03.003
Sima, S., Ahmadalipour, A., & Tajrishy, M. (2013). Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sensing of Environment, 136, 374-385. https://doi.org/10.1016/j.rse.2013.05.014
Tasumi, M. (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin. Agricultural Water Management, 226, Article 105805. https://doi.org/10.1016/j.agwat.2019.105805
Winter, T. C., Rosenberry, D. O., & Sturrock, A. M. (1995). Evaluation of 11 Equations for Determining Evaporation for a Small Lake in the North Central United States. Water Resources Research, 31(4), 983-993. https://doi.org/10.1029/94WR02537
WWA/Yekom. (2005). The Environmental Impact Assessment and study (quality and quantity) of the Development Projects in the Lake Uromiyeh Basin, The West Azerbaijan Water Authority (WWA). In: Ministry of Energy (MoE), IR Iran.
Zamani Losgedaragh, S., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523-531. https://doi.org/10.1016/j.jhydrol.2018.04.025
Zeinoddini, M., Tofighi, M. A., & Vafaee, F. (2009). Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. Journal of Great Lakes Research, 35(1), 13-22. https://doi.org/10.1016/j.jglr.2008.08.001