Urban Growth Boundary Simulation for Isfahan Metropolitan Area: A 2050 Perspective

Authors
1 Professor in Urban & Regional Planning, Tarbiat Modares University, Tehran, Iran.
2 Graduated from Tarbiat Modares University of Tehran
3 Assistant Professor, Department of Water Resources Management, Faculty of Agriculture, Tarbiat Modares University, Tehran
Abstract
Urban growth boundaries are considered one of the key tools for controlling and managing the physical development of metropolitan areas. Uncontrolled and unplanned expansion in these regions has become a major challenge for urban and regional planners and managers, as this process leads to the destruction of agricultural lands and natural resources. The aim of this research is to simulate and assess future changes in growth boundaries in the Isfahan metropolitan area with the goal of preserving environmental resources and controlling physical expansion. In this regard, by adopting a positivist approach that follows an analytical and measurement-driven process, satellite imagery was utilized to assess changes in the physical expansion of the Isfahan metropolitan area. Artificial neural networks and machine learning algorithms were employed to predict the extent of future physical growth, and the projected growth boundaries were delineated. The research findings indicate that the Isfahan metropolitan area has experienced significant uncontrolled expansion, particularly in terms of physical development, over recent decades, and the reduction of agricultural and natural lands has become one of its major challenges. Based on the conducted simulations, the proposed growth boundaries can serve as an effective tool for managing and planning urban-regional development and preventing further degradation of natural resources and lands.


Keywords

Subjects


1. داداش پور, هاشم, سالاریان, فردیس. (1397). تحلیل الگوهای فضایی رشد شهری در مناطق کلانشهری ایران (مطالعۀ موردی: مناطق کلان‌شهری تهران، مشهد، اصفهان و شیراز). آمایش سرزمین, صص 138-117 .
2. داداش پور،هاشم، پناهی،حسین،(1398)، تحلیل عوامل محرک و پیش‌بینی تغییرات کاربری زمین در منطقه کلانشهری تهران با تأکید بر یک مدل منطقه‌ای یکپارچه، فصلنامه برنامه ریزی منطقه ای، صص 56-39
3. داداش پور،هاشم،جهانزاده،نریمان،(1398)، تدوین الگوی بهینه کاربری اراضی با رویکرد اکولوژیک در مجموعه شهری مشهد، نشریه علمی – پژوهشی برنامه ریزی توسعه کالبدی، صص 82-71
4. رحیمی، (1393)، مدلسازی توسعه تبریز در سال 1410 با استفاده از LTM، صص 110 -99
5. زبردست،اسفندیار(1386). بررسی تحولات نخست شهری در ایران،نشریه هنرهای زیبا، صص 38 -29
6. زبردست،حاجی پور،(1388)، تبیین فرآیند شکل گیری ، تکوین و دگرگونی مناطق کلانشهری، صص 121-105
7. شرفی،خمر، (1395)، مدیریت توسعه فیزیکی شهر دهدشت با استفاده از مرزهای رشد شهری جهت توسعه پایدار روستاهای پیرامون. نشریه مطالعات نواحی شهری دانشگاه شهید باهنر کرمان . صص 73-57
8. فلاحتکار،حسینی ، (1395)، پیشبینی تغییرات کاربری اراضی با استفاده از مدل LCM، پژوهش های محیط زیست، صص 174-163
9. کامیاب،ماهینی،(1390)، کاربرد شبکه عصبی مصنوعی در مدلسازی توسعه شهری (مطالعه موردی: شهر گرگان)، پژوهشهای جغرافیای انسانی، صص 113-99
10. محمودزاده ، رنجبر نوازی، (1397)، کاربرد مدل LTM در پیش بینی و مدل سازی توسعه فیزیکی شهر ایلخچی. پژوهش‌های‌جغرافیای‌انسانی،‌دوره‌05‌، بهار‌1‌،شماره‌ 1931 ، صص 53-35.
11. Aytur, S. A., Rodriguez, D. A., Evenson, K. R., & Catellier, D. J. (2008). Urban containment policies and physical activity: a time–series analysis of metropolitan areas, 1990–2002. American journal of preventive medicine, 34(4), pp 320-332.
12. Bhatta, B. (2009). Modelling of urban growth boundary using geoinformatics. International Journal of Digital Earth, 2(4), pp 359-381
13. Colantoni, A., Grigoriadis, E., Sateriano, A., Venanzoni, G., & Salvati, L. (2016). Cities as selective land predators? A lesson on urban growth, deregulated planning and sprawl containment. Science of the Total Environment, 545, pp 329-339.
14. Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran. Sustainable Cities and Society, 47, 101502.
15. Dockerill, B., & Sturzaker, J. (2019). Green belts and urban containment: the Merseyside experience. Planning Perspectives.
16. Harig, O., Hecht, R., Burghardt, D., & Meinel, G. (2021). Automatic delineation of urban growth boundaries based on topographic data using germany as a case study. ISPRS International Journal of Geo-Information, 10(5), pp 353.
17. He, Q., Tan, R., Gao, Y., Zhang, M., Xie, P., & Liu, Y. (2018). Modeling urban growth boundary based on the evaluation of the extension potential: A case study of Wuhan city in China. Habitat International, 72, pp 57-65.
18. Hennig, E. I., Schwick, C., Soukup, T., Orlitová, E., Kienast, F., & Jaeger, J. A. (2015). Multi-scale analysis of urban sprawl in Europe: Towards a European de-sprawling strategy. Land use policy, 49, pp 483-498.
19. Ismail, M. A., Ludin, A. N. M., & Hosni, N. (2018, June). Delineating urban growth limit for managing urbanisation in Iskandar Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 169, No. 1, p. 012042). IOP Publishing.
20. Jehling, M., Hecht, R., & Herold, H. (2018). Assessing urban containment policies within a suburban context—An approach to enable a regional perspective. Land use policy, 77, pp 846-858.
21. Jiang, L., Deng, X., & Seto, K. C. (2013). The impact of urban expansion on agricultural land use intensity in China. Land use policy, 35, pp 33-39.
22. Lai, S. K., & Wang, L. G. W. (2016). Effects of Urban Construction Boundaries on Development Decisions. National Taipei University: Taipei, Taiwan.
23. Liu, X., Liang, X., Li, X., Xu, X., Ou, J., Chen, Y., ... & Pei, F. (2017). A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168,pp 94-116.
24. Long, Y., Han, H., Lai, S. K., & Mao, Q. (2013). Urban growth boundaries of the Beijing Metropolitan Area: Comparison of simulation and artwork. Cities, 31, pp 337-348.
25. Long, Y., Shen, Z., & Mao, Q. (2011). An urban containment planning support system for Beijing. Computers, Environment and Urban Systems, 35(4), pp 297-307.
26. Mao, X., Huang, X., Song, Y., Zhu, Y., & Tan, Q. (2020). Response to urban land scarcity in growing megacities: Urban containment or inter-city connection?. Cities, 96, pp 102-399.
27. Millward, H. (2006). Urban containment strategies: A case-study appraisal of plans and policies in Japanese, British, and Canadian cities. Land Use Policy, 23(4), pp 473-485.
28. Shafizadeh-Moghadam, H., Asghari, A., Tayyebi, A., & Taleai, M. (2017). Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Computers, Environment and Urban Systems, 64, pp 297-308.
29. Shafizadeh‐Moghadam, H., Valavi, R., Asghari, A., Minaei, M., & Murayama, Y. (2022). On the spatiotemporal generalization of machine learning and ensemble models for simulating built‐up land expansion. Transactions in GIS, 26(2), pp 1080-1097.
30. Tayyebi, A., Pijanowski, B. C., & Pekin, B. (2011). Two rule-based urban growth boundary models applied to the Tehran metropolitan area, Iran. Applied Geography, 31(3), pp 908-918.
31. Tayyebi, A., Pijanowski, B. C., & Tayyebi, A. H. (2011). An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landscape and Urban Planning, 100(1-2), pp 35-44.
32. Wang, W., Jiao, L., Zhang, W., Jia, Q., Su, F., Xu, G., & Ma, S. (2020). Delineating urban growth boundaries under multi-objective and constraints. Sustainable Cities and Society, 61, pp 102-279.
33. Woo, M., & Guldmann, J. M. (2011). Impacts of urban containment policies on the spatial structure of US metropolitan areas. Urban Studies, 48(16), pp 3511-3536.
34. Xu, T., Gao, J., & Coco, G. (2019). Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. International Journal of Geographical Information Science, 33(10), pp 1960-1983.