Retrieving Parameters of Leaf Area Index, Chlorophyll Content and Fraction of Vegetation Cover Using an Empirical-Statistical Approach from Chris-Proba Satellite Hyperspectral Images over the Barrax area in Spain

Document Type : Original Research

Author
Tarbiat Modares University
Abstract
Abstract:

It’s Important to retrieve parameters of leaf area index, chlorophyll content and fraction of vegetation cover area used in a wide range of applications such as climate studies, photosynthesis rates, plant nutritional status and geochemical cycles. The knowledge of such parameters provides good insight into the vegetation health, growth stage and quality of vegetation and allows the study the long-term dynamics of vegetation. Generally, parameter retrieval approaches usually fall into two general groups: empirical-statistical approaches and approaches based on physical models. In this study, the retrieving parameters of Leaf Area Index (LAI), chlorophyll content and Fraction of Vegetation Cover (FVC) are presented using an empirical-statistical approach from CHRIS-Proba Satellite Images over the Barrax area in Spain. In this approach, field data and a satellite image of the study area is required to retrieve vegetation parameters. By Providing this data and establishing a relationship between them, the model is calibrated. Eventually, by using linear and nonlinear regression methods, vegetation parameters were retrieved. The results of this study showed that in the retrieving of leaf area index, chlorophyll content and fraction of vegetation cover, exponential GPR (RMSE= 0.78, R2=0.77, MAE=0.49), rational quadratic GPR (RMSE= 4.55, R2=0.36, MAE=3.61) and squared exponential GPR (RMSE= 0.11, R2=0.71, MAE=0.09) models provided the best estimation and fit with the field data. Respectively, analysis of retrieved maps of LAI, chlorophyll content and FVC Indices showed that Gaussian process models, which are nonlinear regression methods, performed better than linear regression methods and supported vector machine methods in retrieving the vegetation parameters. The retrieved maps showed that different Gaussian models have not only been successful in retrieving the shape of agricultural lands, but have also retrieved changes in LAI, chlorophyll content and FVC within agricultural lands with good accuracy

Keywords

Subjects


Ahmadi, R., Amiri Bakhtiar, M.S. (2018), « Application of support vector regression to estimate the formation water saturation in one of the largest oil fields located in the southwest of Iran», JOURNAL OF RESEARCH ON APPLIED GEOPHYSICS, 4(2), 199-210.doi: 10.22044/JRAG.2017.5552.1106.
Shokri, S., Sadeghi, M.T., Marvast, M.A. (2013), « An Integrated Method of Data Pre-processing in Support Vector Regression for the Quality Prediction of Treated Gas-oil», Journal of Petroleum Research, 23(75), 102-116.doi:10.22078/PR.2013.317.
Shamseddini, A. (2017) « LiDAR and optical data capability assessment for plantation structural parameter estimation Assessment of LiDAR and optical data capability in the estimation of structural parameters of plantations », Journal of Spatial Planning, 21(2), 119-145.
Mousivand, A. (2018) «Top of Atmosphere Hyperspectral Image Simulation through Radiative Transfer Models», Journal of Spatial Planning, 21(4), 161-182.
Mahdavifard, M., Khalil ValiZadeh, K., Atazadeh, E. (2020), « Estimation of chlorophyll-a concentration using ground data and Sentinel-2 and Landsat-8 Satellite images processing (Case study: Tiab Estuary», Journal of RS and GIS for Natural Resources, 11(1), 72-83.
Rezaei Navaei, S., Koosha, H. (2016), « Applying Data Mining Techniques for customer churn prediction in insurance industry», International journal on industrial Engeenering & production Management, 27(4), 635-653.
Arneth, A. (2015), «Climate Science: Uncertain Future for Vegetation Cover», Nature, 524(7563), 44-45.doi: 10.1038/524044a.
Baret, F., Buis, S. (2008), «Estimating Canopy Characteristics from Remote Sensing Observation: Review of Methods and Associated Problems», Advanced in Land Remote Sensing, 173-201.
Baret, F., Hagolee, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Nino, Weiss, M., Samain, O., Roujean, J., Leroy, M. (2007), «LAI, FAPAR and fCover Cyclope Global Products Derived from Vegetation Part1: Principals of the algorithm». Remote Sensing and Environment, 110, 275-286.
Bei, C., Qian-jun, ZH., Wen-jiang, H., Xiao-yu, S., Hui-chun, Y., Xian-feng, ZH. (2019), «Leaf Chlorophyll Content Retrieval of Wheat by Simulated RapidEye, Sentinel-2 and EnMAP data», Journal of Integrative Agriculture,18(6):1230-1245.doi: 10.1016/S20953119(18)62093-3.
Darvishzadeh, R., Skidmore, A., Schlerf, M., & Atzberger, C. (2008), « Inversion of a Radiative Transfer Model for Estimating Vegetation LAI and Chlorophyll in a Heterogeneous Grassland», Remote Sensing of Environment, 112(5), 2592-2604.doi: 10.1016/j.rse.2007.12.003.
D’Ursom G., Gomez, S., Vuolo, F., Dini, L. (2009), « Estimation of Land Surface Parameter through Modeling Inversion of Earth Observation Optical Data», Advances in Modeling Agricultural Systems, 317-338.doi: 10.1007/978-0-387-75181-8_15.
Gitelson, A.A., Vina, A., Verma, S.B., Rundquist, D.C., Arkebauer, T.J., Keydan, G., Leavitt, B., Ciganda, V., Burba, G.G., Suyker, A.E. (2006), «Relationship between Gross Primary Production and Chlorophyll Content in Crops: Implication for the Synoptic Monitoring of Vegetation Productivity», Journal of Geophysical Research, 111(D8).doi: 10.1029/2005JD006017.
Huang, J., Zeng, Y., Kuusk, A., Wu, B., Dong, L., Mao, K., Chen, J. (2011a), «Inverting a forest canopy reflectance model to Retrieve the Overstorey and Understory Leaf Area Index for Forest Stands, International Journal of Remote Sensing, 32(22), 7591-7611.doi: 10.1080/01431161.2010.525259.
Jiapear, G., Chen, X., Bao, A. (2011), «A Comparison of Methods foe Estimating Fractional Vegetation Cover in Arid Regions», Agriculture and Forest Meteorology, 151(12), 1698-1710.doi: 10.1016/j.agrformet.2011.07.004.
Knyazikhin, Y., Kranigk, J., Myneni, R.B., Panfyorov, O., & Gravenhorst, G. (1998), «Influence of Small-scale Structure on Radiative Transfer and Photosynthesis in Vegetation Canopies», Journal of Geophysical Research, 103(D6), 6133-6144.doi: 10.1029/97JD03380.
Madhu, B., Paul, A.K., Roy, R. (2019), «Performance Comparison of Various Kernels of Support Vector Machine Regression for Predicting Option Price», International Journal of Discrete Mathematics, 4(1): 21-31.doi: 10.11648/j.dmath.20190401.14.
Marona, R., Martin, R., Yohai, V.J. (2006), « Robust Statistics and Methods », John Wiley & Sons Ltd, England.
Meroni, M., Colombo, R., Panigada, C. (2004), « Inversion of a Radiative Transfer Model With Hyperspectral Observations for LAI Mapping in Poplar Plantations», Remote Sensing of Environment, 92(2), 195–206.doi: 10.1016/j.rse.2004.06.005.
Mu, X., Song, W., Gao, Zh., Mcvicar, T.R., Donohue, R.J., Yan, G. (2018), «Fractional Vegetation Cover Estimation by Using Multi-angle Vegetation Index», Remote Sensing of Environment,216:44-56.doi: 10.1016/j.rse.2018.06.022.
Monteith, J., Unsworth, M. (1990), «Principals of Environmental Physics», London, UK: Edward Arnold.
Neinavaz, E., Skidmore, A.K., Darvishzadeh, R., Groen, T.A. (2016), «Retrieval of Leaf Area Index in Different Plant Species Using Thermal Hyperspectral Data, ISPRS Journal of Photogrammetry and Remote Sensing, 119:390-401.doi: 10.1016/j.isprsjprs.2016.07.001.
Pasolli, L., Asam, S., Castelli, M., Bruzzone, L., Wohlfahrt, G., Zebisch, M., Notarnicola, C. (2015), «Retrieval of Leaf Area Index in Mountain Grasslands in the Alps from MODIS Satellite Imagery», Remote Sensing and Environment, 165,159-174. doi: 10.1016/j.rse.2015.04.027.
Ranwana, R., Palade, V. (2006), «Multi-classifier Systems: Review and a Roadmap for Developers», International Journal of Hybrid Intelligent Systems, 3(1), 35–61.doi: 10.3233/HIS-2006-3104.
Rivera-Caicedo , J.P., Verrelst, J., Munoz-Mari, J., Camps-Valls, G., & Moreno, J. (2017). Hyperspectral dimensionality reduction for biophysical variable statistical retrieval, ISPRS journal of photogrammetry and remote sensing, 132, 88-101.
Sellers, P.J., Los, S.O., Tucker, C.J., Justice, C.O., Dazlich, D.A., Collatz, G.J., Randall, D.A. (1996), «A Revised Land Surface Parametrization (SiB2) for Atmospheric GCMs: Part II. The Generation of Global Field of Terrestrial Biophysical Parameters from Satellite Data», Journal of Climate, 9(4), 706-737.
Smola. A.J., Scholkopf, B. (2004), «A Tutorial on Support Vector Regression», Statistics and Computing, 14, 199-222.
Vapnik, Vladimir. (1995), «The nature of statistical learning theory», Springer, New York.
Verrelst, J., Alonso, L., Caicedo, J.P.R., Moreno, J., & Camps-Valls, G. (2012a), « Gaussian process retrieval of chlorophyll content from imaging spectroscopy data», IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, 6, 867-874.
Wang, K., Chen, Zh. (2016), «Stepwise Regression and All Possible Subsets Regression in Education», Electronic International Journal of Education, Arts and Science, 2(1), 60-81.
Zhang, D., Mansaray, L.R., Jin, H., Sun, H., Kuang, Zh., Huang, J. (2018), «A Universal Estimation Model of Fractional Vegetation Cover for Different Crops based on Time Series Digital Photographs», Computers and Electronics in Agriculture,151, 93-103.doi: 10.1016/j.compag.2018.05.030.
Zhu, X., Feng, X., Zhao, Y. (2011), «Multi-scale MSDT inversion based on LAI spatial knowledge», Science China Earth Sciences, 55(8), 246–255.doi: 10.1007/s11430-011- 4312-0.