Modeling Domain Instabilities Using Time Series Analysis Radar images with SBAS technique

Document Type : Original Research

Authors
Faculty of Geography, University of Tehran
Abstract
Nowadays, given the rapid growth of population, development of infrastructure is inevitable and the pressure of human needs on the soil and exploitation of areas around cities in rural areas are increasing. Access to surface water, fertile soil, groundwater, access to transit roads, etc. have made establishing of new cities compulsory despite the environmental hazards in those areas.

Land deformation as an environmental hazard may be related to tectonic activities such as earthquakes, faults, volcanoes, landslides and anthropogenic processes such as groundwater exploitation, which threaten urban areas. Land surface subsidence is recognized as a potential problem in many areas. This phenomenon is most often caused by human activities, mainly from the removal of subsurface water. Also, Iran with rough and mostly mountainous topography, have a high potential for landslides and instability of slopes.

Pardis new city in the east part of Tehran is one of the areas most prone to Domain Instabilities. The location of the city and its expansion toward the steep slopes have made it susceptible to all kinds of natural hazards, so the main purpose of the study is investigate the potential of landslide and subsidence in Pardis.





Material and Methods

This research consists of two stages: first, ground surface deformation was estimated using radar interferometry technique. Then, landslide susceptible zoning was carried out using Fuzzy and AHP methods.

We applied SBAS algorithm to the 27 SAR images of the Sentinel-1 satellite, in ascending orbit for the time period of 2016.01.06.-2018.12.21. The first step of the SBAS procedure involves the selection of the SAR data pairs to generate the interferograms; the selected images are characterized by a small temporal and spatial separation (baseline) between the orbits in order to limit the noise effect usually referred to as decorrelation phenomena. The second step of the procedure involves the retrieval of the original (unwrapped) phase signals from the modulo-2 π restricted (wrapped) phases directly computed from the interferograms.

In the next stage, landslide susceptibility zones have been evaluated using both fuzzy logic and analytical hierarchy process (AHP) models, as a weighting technique to explore landslide susceptibility mapping. In the modelling process, eight causative variables including aspect, slope degree, altitude, distance from the road, distance from the fault, distance from the river, lithology and land use were identified for landslide susceptibility mapping.

In fuzzy logic the degree of membership of variables may be any real number from 0 (non-membership) to 1 (full membership) which reflects a degree of membership (Zadeh, 1965). By contrast, in Boolean logic, the truth values of variables may only be the integer values 0 or 1. After Fuzzification of all layers, since the causative factors are not the same value, the AHP method to determine the weights was performed. The AHP methodology consists of pairwise comparison of all possible pairs of factors. The relative rating for the dominance between each pair of factors was guided by expert knowledge. After obtaining weight of each factors, these weights are multiplied in the map calculated by fuzzy membership.





Results and Discussion

We used 27 c-band sentinel-1 images for the 2016-2018 period and the Small BAseline Subset (SBAS) approach to investigate land deformation in Pardis. Result of the deformation map of Pardis show that the northern part is uplifted with an annual rate of 25 mm/yr. The uplift of the northern part can be attributed to tectonic factors and the southern part of the basin subsided with an annual rate of -35 mm/yr. Thereafter landslide susceptibility areas have been evaluated. Geomorphological variables (slope, aspect, elevation, river), geology variables (lithology, fault) and anthropogenic variables (land use, roads) have been used for generation of the landslide susceptible map. The results of the landslide susceptible map indicate that the northern part of the Pardis basin have a high potential for landslides. Landslide susceptible map is classified into five classes: very high, high, medium, low and very low.

Medium to very high susceptible class covered 40% of the study area which overlay on uplifting areas resulting from radar technique.



Conclusion

SBAS time series method has been used to detect ground surface deformation and vertical movements. This method is based on an appropriate combination of multi look DInSAR Interferograms. Deformation map indicate that northern part of the basin, uplifted and southern part subsided. The cities of Pardis, Roodehen and Boomehen in the southern part, subsided a mean rate of respectively -35, -31 and -29 mm/year. The northern part uplifted with a mean rate of 25 mm/year which can be attributed to tectonic activity. Then, the landslide susceptibility map was created using both Fuzzy and AHP methods. The result show that more than 40% of the basin is exposed to landslides. The results of both methods SBAS time series analysis, landslide susceptibility mapping, demonstrated domain instabilities in northern part of the basin. As a result, identifying instable areas seems necessary for the urban development of the Pardis.

Key words: Pardis city, SBAS time series analysis, landslide, subsidence

Keywords

Subjects


1. ابراهیم زاده، عیسی؛ قرخلو، مهدی؛ شهریاری، مهدی. (1388). تحلیلی بر نقش شهر جدید پردیس در تمرکز زدایی از مادرشهر تهران، جغرافیا و توسعه، شماره 13، صص 27-46
2. احتشامی معین آبادی، محسن. (1395). خطر گسیختگی سطحی درمحدوده شهر پردیس، استان تهران، لزوم رعایت حریم گسل در توسعه شهری، زمین شناسی کاربردی پیشرفته، شماره 19، صص ۶۲-۴۸
3. احمدی، نعیمه؛ موسوی، زهرا؛ معصومی، زهرا. (1397). مطالعه فرونشست دشت خرمدره با استفاده از تکنیک تداخل سنجی راداری و بررسی مخاطرات آن، سنجش از دور و GIS ایران، سال ۳، شماره ۱۰، صص 33-52
4. بابایی، ساسان؛ موسوی، زهرا؛ روستایی، مه آسا. (۱۳۹۵). آنالیز سری زمانی تصاویر راداری با استفاده از روش های طول خط مبنای کوتاه (SBAS) و پراکنش کننده های دائمی(PS) در تعیین نرخ فرونشست دشت قزوین، علوم و فنون نقشه برداری، سال ۵، شماره ۴، صص ۹۵-۱۱۱
5. پورکرمانی، محسن؛‌ آرین،‌ مهران. (۱۳۸۳). مروری بر مطالعات لرزه‌خیزی گستره تهران، مجله زمین شناسی، دوره ۱۰، شماره ۱، صص ۲۷-۲۱
6. پی کده، مهندسین مشاور. (1384). بازنگری طرح جامع شهر جدید پردیس، جلد اول و دوم ، تهران
7. پیله‌ور، علی اصغر؛ رضایی خبوشان، رضا. (1395). تحلیل امنیت و ناپایداری در شهرهای جدید با استفاده از و (مورد: شهر جدید پردیس). مجله پژوهش‌های جغرافیای سیاسی، سال ۱، شماره ۲، صص ۲۰۲-۱۷۳
8. حشمی، شیما؛ المدرسی، سیدعلی. (1394). مدل سازی فرونشست دشت نیشابور با استفاده از سری های زمانی و تکنیک DINSAR، جغرافیا و برنامه‌ریزی محیطی، دوره ۲۶، شماره ۱، ۸۴-۶۷
9. حیدری، شهریار؛ خالقی بابایی، امید. (1394). مروری بر گسل‌های فعال شهر تهران. کنفرانس ملی مهندسی معماری، عمران و توسعه شهری
10. رفیعی، جعفر؛ صدیقی، مرتضی. (۱۳۹۵). تعیین میزان فرونشست بر پایه تداخل سنجی راداری(InSAR) در میدان نفتی نفت شهر، همایش ملی ژئوماتیک
11. شرکت عمران شهر جدید پردیس (1393)، شهر جدید پردیس
12. شریفی کیا، محمد. (1391). تعیین میزان و دامنه فرونشست زمین به کمک روش تداخل سنجی راداری در دشت نوق-بهرمان، برنامه ریزی و آمایش فضا (مدرس علوم انسانی)، دوره16، شماره 3، صص ۷۶-۵۵
13. شیرانی، کوروش؛ خوش باطن، محبوبه. (1395). بررسی و پایش زمین لغزش فعال با استفاده از روش تداخل سنجی تفاضلی راداری (مطالعه موردی: زمین لغزش نقل، سمیرم)، فصلنامه کواترنری ایران، دوره ۲، شماره ۱، صص 53-65.
14. صالحی، رضا؛ غفوری، محمد؛ لشکری پور، غلامرضا؛ دهقانی، مریم. (1392). بررسی فرونشست دشت مهیار جنوبی با استفاده از روش تداخل سنجی راداری، فصلنامه علمی پژوهشی مهندسی آبیاری و آب، دوره ۳، شماره ۳، صص ۵۷-۴۷
15. صفاری، امیر، جعفری، فرهاد؛ سنجش مقدار و پهنه بندی خطر فرونشست زمین با استفاده از روش تداخل سنجی راداری ، مطالعه موردی: دشت کرج-شهریار؛ فصلنامه علمی –پژوهشی و بین المللی انجمن جغرافیای ایران، شماره ۴۸، صص ۱۸۸-۱۷۵
16. عابدینی، موسی؛ قاسمیان، بهاره؛ شیرزادی، عطاالله. (1393). مدلسازی خطر وقوع زمین‌لغزش با استفاده از مدل آماری رگرسیون لجستیک (مطالعه موردی: استان کردستان، شهرستان بیجار)، مجله جغرافیا و توسعه، شماره 37، صص 85 تا 102
17. قنادی، محمدامین ؛ عنایتی، حمید؛ خصالی؛ الهه؛ انصاری، امیر. (1397). تولید مدل رقومی ارتفاعی زمین با استفاده از تصاویر سنتینل 1 و تکنیک تداخل سنجی راداری، فصلنامه علمی پژوهشی اطلاعات جغرافیایی، دوره ۲۷، شماره ۱۰۸، صص 109-122.
18. مسعودیان، ابوالفضل؛ کاویانی، محمدرضا. (1387)، اقلیم‌شناسی ایران، دانشگاه اصفهان، چاپ اول
19. نجفی، اسماعیل. (1394). مدل سازی ژئومورفولوژیکی احداث پل‌ها در مسیل‌های شهری (مطالعه موردی کلانشهر تهران)، رساله دکتری ژئومورفولوژی، دانشگاه خوارزمی، تهران.
20. Aghdam I N, Morshed M H, Pradhan B. (2016). Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains(Iran), Environmental Earth Science , 75, 533.
21. Agustan S, Albertus IT. (2016). Measuring Deformation in Jakarta through Long Term Synthetic Aperture Radar(SAR) Data Analysis, Earth and Environmental Science. 47 (1), pp 012022
22. Chaussard E, Wdowinski S, Cano C E, Amelung F. (2014). Lans subsidence in central Mexico detected by ALOS InSAR time-series, Remote Sensing of Environment, 140, PP 94-106.
23. Chen M, Tomás R, Li Zh, Motagh M, Li T, Hu L, Gong H, Li X, Yu J, Gong X. (2016). Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry, Remote Sens, 8(6), 468.
24. Chengtai D. (1999). urban geomorphology in Chinese
25. Declercq P, Walstra J, Gérard P, Pirard M E, Perissin D, Meyvis B, Devleeschouwer X. (2017). A Study of Ground Movements in Brussels (Belgium) Monitored by Persistent Scatterer Interferometry over a 25-Year Period, Geosciences 7(4). 115.
26. Dinho, H., Le, V. T., Thuy, L. T. (2015). Mapping Ground Subsidence Phenomena in Ho Chi Minh City through the Radar Interferometry Technique Using ALOS PALSAR Data, Remote Sens, 7, 8543-8562.
27. Dong S C, Samsonov S, Yin HW. (2014). Time–Series Analysis of Subsidence Associated with Rapid Urbanization in Shanghai, China Measured with SBAS InSAR Method. Environmental Earth Sciences, 72 (3): 677–691.
28. Farrokhnia A, Pirasteh S, Pradhan B, Pourkermani M, Arian M. (2011). A recent scenario of mass wasting and its impact on the transportation in Alborz Mountains, Iran using geo information technology, Aeabiab Journal of Geosciences, 4(7-8), pp 1337-1349.
29. Galloway D. Hudnut K, Ingebritsen S, Phillips S, Peltzer GF, Rosen P. (1998), Detection of aquifer system compaction and land subsidence using Interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California, Journal of Water Resource Research, Journal of water resource research , 34(10): 2573-2583.
30. Hanssen, RF. (2001). Radar interferometry:data interpretation and error analysis(vol,2). Spinger Science and Business Media.
31. Hong Y R, Adler F, Huffman G. (‌2007). An experimental global prediction system for rainfall triggered landslides using satellite remote sensing and geospatial datasets. IEEE Transactions on Geoscience and Remote, 45: 1671–1680.
32. Khavaninzadeh N, (2011), Using RADAR interferometry for landslide studying. MSc Thesis, Faculty of Engineering, Tehran University, 145 pages (in Persian).
33. Kimura H, Yamaguchi Y. (2000). Detection of landslide Areas Using Satellite Radar Interferometry, Photogrammetric Engineering & Remote Sensing, 66(3). Pp 337-344.
34. Lanari R, Casu F, Manzo M, Lundgren P. (2007). Application of the SBAS-DInSAR technique to fault creep, A case study of the Hayward fault, California, Remote Sensing of Environment, 109, pages 20-28 .
35. Long NT. (2008). Landslide susceptibility mapping of the mountainous area in a Luoi district, Thua thien Hue Province, Vietnam. Universiteit Brussel, Faculty of Engineering, Department of Hydrology and Hydraulic Engineering. PhD Thesis. p .229.
36. Marfai MA, King L. (2007). Monitoring Land Subsidence in Semarang,Indonesia, Environmental Geology, 53(3),pages 651-659.
37. Motagh M, Djamour Y, Walter TR, Wetzel HU, Zschau, J, Arabi S. (2007). Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, leveling and GPS, Geophys. J. Int, vol. 168, pp. 518-526
38. Motagh M, Walter TR, Sharifi M A, Feilding E, Schenk A, Anderssohn J, Zschau J. (2008), Land subsidence in Iran cauaed by widespread water reservoir overexploitation, Geophysical Research Letter.
39. Osmanoglu B, Dixon TH, Wdowinski S, Cabral–Cano E, Jiang Y. (2011). Mexico city subsidence observed with persistent Scatterer InSAR , International journal of Applied Earth Observation and Geoinformation, 13(1), pp 1-12.
40. Pradhan B, Lee S. (2007).Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model, Earth Science Frontiers, 14(6), pages 143-151.
41. Rosen P A, Hensley S, Joughin I R, Li F K, Madsen SN, Rodriguez E. (2000). Synthetic aperture radar interferometry. IEEE Proceedings, 88,333−376
42. Sadeghi Z, Valadan Z, Dehghani M. (2013). An Improved Persistent Scatterer Interferometry for Subsidence Monitoring in the Tehran Basin, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (6) 3 , pp 1571-1577.
43. Xue YQ, Zhang Y, Ye SJ, Wu JC, Li QF. (2005). Land subsidence in China. Environ Geol 48:713–720
44. Yagüe-Martínez N, Prats-Iraola P, González FR, Brcic R, Shau R, Geudtner D, Eineder M, Bamler R. (2016). Interferometric Processing of Sentinel-1 TOPS data, IEEE Transactions on Geoscience and Remote Sensing, 54(4), pages 2220 – 2234.
45. Zhou CH, Gong H, Chen B, Li J, Gao M, Zhu F, Chen W. (2017). InSAR Time-Series Analysis of Land Subsidence under Different Land Use Types in the Eastern Beijing Plain, China, Remote Sens, 9(4), 380.
46. Zhou Z. (2013). The applications of InSAR time series analysis for monitoring long-term surface change in peatlands, University of Glasgow.
47. Ziari k. (2005). New towns planning, Samt press.Tehran.