Top of atmosphere Hyperspectral image simulation through radiative transfer models

Authors
Remote sensing and GIS department, Tarbiat Modares university, Tehran, Iran
Abstract
Satellite image simulation is of paramount importance in quantitative remote sensing studies. Synthetic signals/images are used in a range of applications including; pre-launch algorithm development and performance evaluation; designing sensors for given application; and parameter retrieval through inverse modelling. Top of atmosphere sensor reaching radiance is a complex function of the interactions between solar radiation and the Earth's atmosphere and surface. The at-sensor radiance is, therefore, a combination of the surface reflectance, atmospheric effects, target’s surroundings effects plus illumination and viewing geometry. Radiative transfer models are commonly used to simulate at-sensor radiance using physical and chemical properties of the surface and atmosphere. This paper presents a modeling system for the simulation of optical hyperspectral images through the extended four-stream approach. The system is modeled at three different levels: the surface, the atmosphere and the sensor. The simulation begins with four surface reflectance factors modeled by the Soil-Leaf-Canopy radiative transfer model SLC at the top of canopy and propagate them through the effects of the atmosphere which is explained by six atmospheric coefficients, derived from MODTRAN4 radiative transfer code. The top of atmosphere radiance is then convolved with the sensor spectral and spatial response functions. Validation of the model is considered over the Barrax area in Spain, using the dataset provided during SEN3EXP campaign (2009), to simulate hyperspectral CHRIS-Proba and multispectral LANDSAT-5 imageries. Overall, comparisons between simulated and actual images demonstrated model’s capability in simulating satellite signal/image with RMSE better that 0.02 for vegetative surface reflectances.

Keywords

Subjects


Adler, S. M., Matthew, M. W., Bernstein, L. S., Levine, R. Y., Berk, A., Richtsmeier, S. C., Burke, H. H. (1999). Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4. Paper Presented at the Proceedings of SPIE Conference on Imaging Spectrometry. doi: 10.1117/12.366315.
Berk, A., Anderson, G. P., Bernstein, L. S., Acharya, P. K., Dothe, H., Matthew, M. W., Hoke, M. L. (1999). MODTRAN4 Radiative Transfer Modeling for Atmospheric Correction. Paper Presented at the SPIE Proceeding, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III. doi: 10.1117/12.366388.
Börner, A., Wiest, L., Keller, P., Reulke, R., Richter, R., Schaepman, M., & Schläpfer, D. (2001). SENSOR: a Tool for the Simulation of Hyperspectral Remote Sensing Systems. ISPRS Journal of Photogrammetry and Remote Sensing, 55(5–6), 299-312. doi:10.1016/s0924-2716(01)00022-3.
Guanter, L., Richter, R., & Kaufmann, H. (2009). On the Application of the MODTRAN4 Atmospheric Radiative Transfer Code to Optical Remote Sensing. Remote Sensing, 30(6), 1407-1424. doi: 10.1080/01431160802438555.
Guanter, L., Segl, K., & Kaufmann, H. (2009). Simulation of Optical Remote-sensing Scenes with Application to the EnMAP Hyperspectral Mission. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2340-2351. doi: 10.1109/TGRS.2008.2011616.
Hapke, B. (1981). Bidirectional Reflectance Spectroscopy 1. Theory. Geophysical Research, 86(B4), 3039-3054. doi: 10.1029/JB086iB04p03039.
Isaacs, R. G., & Vogelmann, A. M. (1988). Multispectral Sensor Data Simulation Modeling Based on the Multiple Scattering LOWTRAN code. Remote Sensing of Environment, 26(1), 75-99. doi: 10.1016/0034-4257(88)90120-4.
Jacquemoud, S., & Baret, F. (1990). PROSPECT: A Model of Leaf Optical Properties Spectra. Remote Sensing of Environment, 34(2), 75-91. doi: 10.1016/0034-4257(90)90100-z.
Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., Ustin, S. L. (2009). PROSPECT+SAIL Models: A Review of Use for Vegetation Characterization. Remote Sensing of Environment, 113, S56–S66. https://doi.org/10.1016/j.rse.2008.01.026.
Kerekes, J. P., & Landgrebe, D. A. (1989). Simulation of Optical Remote Sensing Systems. IEEE Transactions on Geoscience and Remote Sensing, 27, 762–771. doi: 10.1109/36.35965.
Laurent, V. C. E., Verhoef, W., Clevers, J. G. P. W., & Schaepman, M. E. (2011). Estimating Forest Variables From Top-of-atmosphere Radiance Satellite Measurements Using Coupled Radiative Transfer Models. Remote Sensing of Environment, 115(4), 1043-1052. doi: 10.1016/j.rse.2010.12.009.
Laurent, V. C. E., Verhoef, W., Damm, A., Schaepman, M. E., & Clevers, J. G. P. W. (2013). A Bayesian Object-based Approach for Estimating Vegetation Biophysical and Biochemical Variables from APEX at-sensor Radiance Data. Remote Sensing of Environment, 139(0), 6-17. doi:http://dx.doi.org/10.1016/j.rse.2013.07.032.
Laurent, V. C. E., Verhoef, W., Schaepman, M. E., Damm, A., & Clevers, J. G. P. W. (2012, 22-27 July 2012). Mapping LAI and Chlorophyll Content from at-sensor APEX Data Using a Bayesian Optimisation of a Coupled Canopy-atmosphere Model. Paper Presented at the Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International. doi: 10.1109/IGARSS.2012.6352321.
Liu, B., Zhang, L., Zhang, X., Zhang, B., & Tong, Q. (2009) Simulation of EO-1 Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction Approach. Sensors, 9, 3090–310. doi: 10.3390/s90403090.
Mousivand, A., Menenti, M., Gorte, B., & Verhoef, W. (2014). Global sensitivity analysis of the spectral radiance of a soil–vegetation system. Remote Sensing of Environment, 145(0), 131-144. http://dx.doi.org/10.1016/j.rse.2014.01.023.
Mousivand, A., Menenti, M., Gorte, B., & Verhoef, W. (2015). Multi-temporal, Multi-sensor Retrieval of Terrestrial Vegetation Properties from Spectral–directional Radiometric Data. Remote Sensing of Environment, 158(0), 311-330. http://dx.doi.org/10.1016/j.rse.2014.10.030.
Mousivand, A., Verhoef, W., Menenti, M., & Gorte, B. (2015). Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain. Remote Sensing, 7(6), 8019. doi:10.3390/rs70608019.
Parente, M., Clark, J. T., Brown, A. J., & Bishop, J. L. (2010). End-to-End Simulation and Analytical Model of Remote-Sensing Systems: Application to CRISM. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 3877-3888. doi: 10.1109/TGRS.2010.2050000.
Schläpfer, D., Borel, C. C., Keller, J., & Itten, K. I. (1998). Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor. Remote Sensing of Environment, 65(3), 353-366. https://doi.org/10.1016/S0034-4257(98)00044-3.
Schläpfer, D., & Nieke, J. (2005). Operational Simulation of at Sensor Radiance Sensitivity Using the MODO / MODTRAN4 Environment Paper Presented at the 4th EARSeL Workshop on Imaging Spectroscopy. New Quality in Environmental Studies, Warsaw.
Verhoef, W. (1984). Light scattering by Leaf Layers with Application to Canopy Reflectance Modeling: the SAIL model. Remote Sensing of Environment, 16, 125-141. https://doi.org/10.1016/0034-4257(84)90057-9.
Verhoef, W., & Bach, H. (2003). Simulation of Hyperspectral and Directional Radiance Images Using Coupled Biophysical and Atmospheric Radiative Transfer Models. Remote Sensing of Environment, 87, 23-41. https://doi.org/10.1016/S0034-4257(03)00143-3.
Verhoef, W., & Bach, H. (2007). Coupled Soil-leaf-canopy and Atmosphere Radiative Transfer Modeling to sSimulate Hyperspectral Multi-angular Surface Reflectance and TOA Radiance Data. Remote Sensing of Environment, 109(2), 166-182. https://doi.org/10.1016/j.rse.2006.12.013.
Verhoef, W., & Bach, H. (2012). Simulation of Sentinel-3 images by Four-stream Surface–atmosphere Radiative Transfer Modeling in the Optical and Thermal Domains. Remote Sensing of Environment, 120(0), 197-207. http://dx.doi.org/10.1016/j.rse.2011.10.034.
Zhang, J., Zhang, X., Zou, B., & Chen, D. (2010). On Hyperspectral Image Simulation of a Complex Woodland Area. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 3889-3902. doi: 10.1109/TGRS.2010.2063435.