Abkar, A., Habibnejad, M., Solimani, K., Naghvi, H. (2013). Evaluation of SDSM Performance in Simulating Temperature Indices in Arid and Semi-arid Regions, Mashhad and Kerman Regions. the Iranian Society of Irrigation & Water Engineering, 4(14), 1-17. (in Pershian)
Ildoromi, A., Zareabyaneh, H., Bayatvarkeshy, M. (2013). Rainfall Estimation with Artificial Neural Network Based on Non-Rainfall Weather Data in Shiraz, Mashhad and Kerman Regions. Geography and Planning, 17(43), 21-40. (in Pershian)
Khoshhal dastjerdi, J., Hosseini, S. (2010). Application of Artificial Neural Network in Climatic Elements Simulation and Drought Cycle Predication (Case Study: Isfahan Province). Geography and Environmental Planning, 21(3), 107-120. (in Pershian)
Halbian, A., Darand, M. (2011). Forecasting of Isfahan Precipitation Using Artificial Neural Networks. Applied Research of Geographic Sciences, 12(26), 48-62. (in Pershian ).
Gharibi, E., Khoshakhlagh, F., Shafiei, Z. (2011). The Study of the Lowest Temperature Changes in Iran. Geography and Environmental Planning, 22(2), 199-216. (in Pershian )
Rezaee, M., Nahtaj, M., Moghadamniya, A., Abkar, A., Rezaee, M. (2015). Comparison of Artificial Neural Network and SDSM Methods in the Downscaling of Annual Rainfall in the HadCM3 Modelling (Case Study: Kerman, Ravar and Rabor), 8(24), 25-40. (in Pershian )
Sobhani, B., Eslahi, M., Babaeian, I. (2015). Efficiency of Statistical Downscaling Models of SDSM and LARS-WG in the Simulation of Meteorological Parameters in Lake Urmia Basin. Physical Geography Research Quarterly, 47(4), 499-516. doi: 10.22059/jphgr.2015.56046. (in Pershian )
Salajegheh, A., Rafiei Sardooei, E., Moghaddamnia, A., Malekian, A., Araghinejad, S., Khalighi Sigaroodi, S., Salehpourjam, A. (2016). Prediction of Climatic Variables using Statistical Downscaling Model (SDSM) in Future under Scenario A2. Desert Management, 4(7), 12-25. (in Pershian )
Salehpour jam, A., Mohseni Saravi, M., Bazrafshan, J., Khalighi, S. (2015). Investigation of Climate Change Effect on Drought Characteristics in the Future Period using the HadCM3 model (Case Study: Northwest of Iran). Range and Watershed Managment, 67(4), 537-548. doi: 10.22059/jrwm.2015.53472. (in Pershian )
Boromand, S., Hosseini, A., SHaeghi, H., Sobhani, B (2009) Prediction of Maximum Temperatures Using Artificial Neural Network Model (Case Study: Ardabil City), Geographic Research, 25(3)59-78. (in Pershian )
Samadi, S., Habibi Nokhandan, M., Zabol Abbasi, F. (2013). Using SDSM Model to Downscaling Precipitation and Temperature GCM Data for Study Station Climate Predictions over Iran. Climate Research, 1390(5), 57-68. (in Pershian )
Salahi, B., Hosseini, S., Shaeghi Moghanlo, H., Sobhani, B. (2009). Prediction of Maximum Temperatures Using Artificial Neural Network Model (Case Study: Ardabil City). Geographical Research, 25(3), 57-78. (in Pershian )
Arfanian, M., Ansari, H., Alizadeh, A. (2011). Precipitation and Monthly Average Temperature Prediction Using Distant Graft Patterns Using Artificial Neural Networks (Case study: Synoptic Station of Mashhad). Geographical Studies of Arid Regions, 3(11), 53-73. (in Pershian )
Goodarzi M, salahi B, hosseini A. Performance Analysis of LARS-WG and SDSM Downscaling Models in Simulation of Climate Changes in Urmia Lake Basin. Jwmseir. 2016; 9(31):11-23 URL: http://jwmsei.ir/article-1-600-en.html. (in Pershian )
Ghavidel Rahimi, Y. (2010). The Statistical Detection of the Global Warming Impact on Fluctuations of Annual Precipitation in Jolfa Station Using Artificial Neural Networks. Geography and Environmental Planning, 21(2), 65-82. (in Pershian )
Ghermezcheshmeh, B., Rasuli, A., Rezaei-Banafsheh, M., Massah, A., Khorshiddoost, A. (2015). Uncertainty Analyzing of Neural Network in Downscaling of HadCM3 Data with Bootstrap Confidence Interval Method. Watershed Engineering and Management, 7(3), 306-316. doi: 10.22092/ijwmse.2015.101638. (in Pershian )
Ghasemifar, E., Alijani, B., Salighe, M. (2017). Investigation of Climate Change on the Southern Coastal of the Caspian Sea Using SDSM, LARS-WG and Artificial Neural Network, 9(34), 23-41. (in Pershian )
Golkar, F., Farahmand, A., Farahmand, F. (2008).An Investigation on Application of Artificial Neural Network in Shiraz Precipitation. National Conference on Water Crisis Management, (1), 1-10. (in Pershian )
Golabi, M., Akhondali, A., Radmanesh, F. (2012). Comparison of Performance of Different Artificial Neural Network Algorithms in Seasonal Rainfall Modeling Case study; Selected Stations in Khuzestan Province. Applied Research of Geographic Sciences, 13(30), 151-169. (in Pershian )
Houshyar, M., Hosseini, A., Mesgari, E. (2012). Modeling of Urmia Township Minimum Temperatures Through Linear and Nonlinear Multiple Regression and Artificial Neural Networks Models. Geographic Thought, 6(12), 1-33. (in Pershian )
Abbasnia, M., Tavousi, T. and Khosravi., M. (2016) Assessment of Future Changes in the Maximum Temperature at Selected Stations in Iran Based on HADCM3 and CGCM3 Models. Asia-Pac. J. Atmos. Sci. 52(4), 371-377. https://doi.org/10.1007/s13143-016-0006-z.
Aggarwal, K. Singh., Y. Chandra., P. and Puri., M. (2005) Bayesian Regularization in a Neural Network Model to Estimate Lines of Code Using Function Points. Computer Sciences 1. (4): 505-509. DOI: 10.3844/jcssp.2005.505.509.
Carter, T. R., & Kenkyū, K. K. K. C. K. (1994). IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations: Part of the IPCC Special Report to the First Session of the Conference of the Parties to the UN Framework Convention on Climate Change. London. Department of Geography, University College London.
Dibike, Y., Coulibaly, P. (2005). Hydrological Impact of Climate Change in the Saguenay watershed:Comparison of Downscaling Methods and Hydrologic models. Hydrology. 307, 145–163. https://doi.org/10.1016/j.jhydrol.2004.10.012.
Harpham, H., and Wibly, R.L. (2005). Multi-site Down Scaling of Heavy Daily Precipitation Occurrence and Amount. Hydrology. (312), 235-255. https://doi.org/10.1016/j.jhydrol.2005.02.020.
Huang ., J. Zhang.,J. Zhang.,Z and Shanlei., S. Yao., J. (2016) Simulation of Extreme Precipitation Indices in the Yangtze River Basin by Using Statistical Downscaling Method (SDSM). Theor Appl Climatol. 108(2012):325–343.https://doi.org/10.1007/s00704-011-0536-3.
IPCC., (2014). Summary for Policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Field, C.B., V.R. Barros, D.J.Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B.Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1-32.
Metekiya., M. Gulacha., M .,M. Mulungu., M. (2016). Generation of Climate Change Scenarios for Precipitation and Temperature at Local Scales Using SDSM in Wami-Ruvu River Basin Tanzania. Physics and Chemistry of the Earth Physics. (2016) 1-11. https://doi.org/10.1016/j.pce.2016.10.003.
Mahmood, R., Babel, M. (2014) Future Changes in Extreme Temperature Events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum River Basin. Weather and Climate Extremes. 5-6 (2014) 56–66. https://doi.org/10.1016/j.wace.2014.09.001.
Qian, B., Gameda, S., Hayhoe, H., De Jong, R., & Bootsma, A. (2004). Comparison of LARS-WG and AAFC-WG Stochastic Weather Generators for Diverse Canadian climates. Climate Research, 26(3), 175-191. http://www.jstor.org/stable/e24868719.
Rajabi, A., Shabanlou., S. (2013) The Analysis of Uncertainty of Climate Change by Means of SDSM Model Case Study: Kermanshah. World Applied Sciences. 23(10): 1392-1398. DOI: 10.5829/idosi.wasj.2013.23.10.3152.
Samadi, S., Wilson, C. A. M. E. Moradkhani, H. (2013). Uncertainty Analysis of Statistical Downscaling Models Using Hadley Centre Coupled Model. Theoretical Applied Climatology. 114, 673–690. https://doi.org/10.1007/s00704-013-0844-x.
Samadi, S., Ehteramian, K. Sari Sarraf., B. (2013). SDSM Ability in Simulate Predictors for Climate Detecting over Khorasan Province. Procedia Social and Behavioral Sciences. 19(2011). 741–749.https://doi.org/10.1016/j.sbspro.2011.05.193.
Sharma, D., Gupta, A. D., & Babel, M. S. (2007). Spatial Disaggregation of Bias-Ccorrected GCM Precipitation for Improved Hydrologic Simulation: Ping River Basin, Thailand. Hydrology and Earth System Sciences Discussions, 11(4), 1373-1390.
Shamsipoor, A. (2013). Climate Modeling Theory and Methods, Tehran University Press:p.294. (in Pershian )
Tatsumi, K., Oizumi., T, Yamashiki., y. (2015). Effects of Climate Change on Daily Minimum and Maximum Temperatures and Cloudiness in the Shikoku Region: a Statistical Downscaling Model Approach. Theor Appl Climatol. (2015) 120:87–98. https://doi.org/10.1007/s00704-014-1152-9.
Wilby, R. L., Dawson, W., C. (2007). SDSM 4.2- A Decision Support Tool for the Assessment of Regional Climate Change Impacts, SDSM Manual Version 4.2. Environment Agency of England and Wales. 94 pp.
Wilby, R.L., Dawson, C.W., and Barrow, E.M. (2002) A Decision Support Tool for the Assessment of Regional Climate Change Impacts. Environmental Modelling & Software. 17: 147–159. https://doi.org/10.1016/S1364-8152(01)00060-3.
Wang, H., G., Yu, Z., Mei, R. (2012). Assessing Future Climate Changes and Extreme Indicators in East and South Asia Using the RegCM4 Regional Climate Model. Climate Change. 114 (2), 301–317. https://doi.org/10.1007/s10584-012-0411-y.
Wigley, T., M. L., Jones, P. D., Briffa, K. R., & Smith, G. (1990). Obtaining Sub‐grid‐scale Information from Coarse‐resolution General Circulation Model Output. Geophysical Research: Atmospheres, 95(D2), 1943-1953.DOI: 10.1029/JD095iD02p01943.
www.irimo.ir.