تحلیل و مدل‌سازی تغییرات آب‌های زیرزمینی با استفاده از الگوریتم‌های داده‌کاوی مکانی و زمانی و یادگیری عمیق بمنظور ارتباط سنجی آن با مخاطره فرونشست

نوع مقاله : پژوهشی اصیل

نویسندگان
1 استادیار سنجش از دور و GIS، دانشگاه تربیت مدرس، تهران، ایران
2 کارشناسی ارشد سنجش از دور و GIS، دانشگاه تربیت مدرس، تهران، ایران
3 کارشناسی ارشد سنجش از دور و GIS، دانشگاه تربیت مدرس، تهران، ایران.
4 دانشیار سنجش از دور و GIS، دانشگاه تربیت مدرس، تهران، ایران
چکیده
در مناطق خشک و نیمه‌خشک، کمبود آب‌های سطحی منجر به برداشت بی‌رویه از آب‌های زیرزمینی و کاهش شدید سطح آب شده که در بسیاری از دشت‌های ایران به پدیده فرونشست زمین انجامیده است. درک تغییرات سطح آب زیرزمینی برای مدیریت بهینه منابع آبی و کاهش مخاطرات مرتبط اهمیت زیادی دارد. روش‌های مختلف آماری، ریاضی و یادگیری ماشین برای مدل‌سازی این تغییرات استفاده شده‌اند. اخیراً، شبکه‌های عصبی عمیق به‌ویژه برای تحلیل رفتار پیچیده آب‌های زیرزمینی، به‌دلیل ماهیت زمانی-مکانی آن‌ها، مورد توجه قرار گرفته‌اند. در این تحقیق، از مدل ترکیبی Wavelet-Principal Component Analysis (PCA) برای تحلیل داده‌های ۴۴ چاه پیزومتری دشت قهاوند طی دوره ۳۰ ساله (۱۳۶۷-۱۳۹۷) استفاده شده است. این مدل، الگوهای زمانی و مکانی تغییرات سطح آب زیرزمینی را در مقیاس‌های مختلف زمانی استخراج کرده و سپس مؤلفه‌های اصلی به‌دست‌آمده از Wavelet-PCA به مدل شبکه عصبی بازگشتی Long Short Term Memory (LSTM) ارائه شدند تا سری‌های زمانی سطح آب پیش‌بینی شود. سطوح مختلف تبدیل موجک برای شناسایی روندهای کوتاه‌مدت و بلندمدت به‌کار گرفته شد. مدل LSTM با دقت R2 = 0.85 برای گروه آموزشی و R2 = 0.62 برای داده‌های آزمایشی توانست روندهای سطح آب زیرزمینی را مدل‌سازی کند. همچنین، داده‌های راداری ماهواره Sentinel-1 بین سال‌های ۲۰۱۴ تا ۲۰۱۹ نشان داد که بیشینه فرونشست زمین در مناطقی با افت قابل‌توجه سطح آب زیرزمینی رخ داده است. همپوشانی این نقشه‌ها با لایه‌های کاربری زمین، ارتباطی معنادار بین فعالیت‌های کشاورزی و افت سطح آب زیرزمینی و فرونشست زمین را نشان داد.

کلیدواژه‌ها

موضوعات


Abdi, H., & Williams, L. (2010). Principal Component Analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459
Addison, P.S. (2016). The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance. CRC Press
Ahmadi, T. (2018). The effect of meteorological and hydrological drouth on landuse changes using remote sensing (Case study: Qahavand Plain, Hamedan province). In, Faculty of Natural Resources and Environment: Malayer University
Alley, W.M., & Konikow, L.F. (2015). Bringing GRACE Down to Earth. Ground Water, 53, 826-829
Cattell, R.B. (1966). The Scree Test For The Number Of Factors. Multivariate Behavioral Research, 1, 245-276
Chu, H., Bian, J., Lang, Q., Sun, X., & Wang, Z. (2022). Daily groundwater level prediction and uncertainty using lstm coupled with pmi and bootstrap incorporating teleconnection patterns information. Sustainability, 14, 11598
Daubechies, I. (1992). Ten lectures on wavelets. SIAM
Elshall, A., Arik, A., El-Kadi, A., Pierce, S., Ye, M., Burnett, K., Wada, C., Bremer, L., & Chun, G. (2020a). Groundwater sustainability: A review of the interactions between science and policy. Environmental Research Letters, 15
Elshall, A.S., Arik, A.D., El-Kadi, A.I., Pierce, S., Ye, M., Burnett, K.M., Wada, C.A., Bremer, L.L., & Chun, G. (2020b). Groundwater sustainability: a review of the interactions between science and policy. Environmental Research Letters, 15
Farmanifard, S., Alesheikh, A.A., Sharif, M., & Alizadeh, D. (2023). Tropical Storm Path Prediction Using Long Short-Term Memory Model, Similarity Measurement of Trajectories and Contextual Information. Journal of Geospatial Information Technology, 11, 1-16
Galloway, D.L., & Burbey, T.J. (2011). Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19, 1459-1486
Gers, F., Schmidhuber, J., & Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural computation, 12, 2451-2471
Gleeson, T., Wada, Y., Bierkens, M.F.P., & van Beek, L.P.H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488, 197-200
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 1735-1780
Jolliffe, I. (2002). Principal Component Analysis
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200
Karami, J., Alimohammadi, A., & Modabberi, S. (2012). Analysis of the Spatio-Temporal Patterns of Water Pollution and Source Contribution Using the MODIS Sensor Products and Multivariate Statistical Techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5, 1243-1255
Karami, J., Alimohammadi, A., & Seifouri, T. (2014). Water quality analysis using a variable consistency dominance-based rough set approach. Computers, Environment and Urban Systems, 43, 25-33
Konikow, L., & Kendy, E. (2005a). Groundwater Depletion: A Global Problem. Hydrogeology Journal, 13, 317-320
Konikow, L.F., & Kendy, E. (2005b). Groundwater depletion: A global problem. Hydrogeology Journal, 13, 317-320
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci., 22, 6005-6022
Machiwal, D., & Jha, M.K. (2015). Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. Journal of Hydrology: Regional Studies, 4, 80-110
Maier, H.R., & Dandy, G.C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 15, 101-124
Mallat, S. (1989). Mallat, S.G.: A Theory of Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Machine Intell. 11, 674-693. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11, 674-693
Moosavi, V., Vafakhah, M., Shirmohammadi, B., & Behnia, N. (2013). A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resources Management, 27
Motagh, M., Walter, T.R., Sharifi, M.A., Fielding, E., Schenk, A., Anderssohn, J., & Zschau, J. (2008). Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35
Nourani, V., Hosseini Baghanam, A., Adamowski, J., & Gebremichael (2013). Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. Journal of Hydrology, 476, 228-243
Nourani, V., Hosseini Baghanam, A., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. Journal of Hydrology, 514, 358-377
Qiao, W., Tian, W., Tian, Y., Yang, Q., Wang, Y., & Zhang, J. (2019). The forecasting of PM2. 5 using a hybrid model based on wavelet transform and an improved deep learning algorithm. IEEE Access, 7, 142814-142825
Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology, 572, 336-351
Sanayei, R., Vafaeinejad, A., Karami, J., & Aghamohammadi Zanjirabad, H. (2021). A model development on GIS-driven data to predict temporal daily collision through integrating Discrete Wavelet Transform (DWT) and Artificial Neural Network (ANN) algorithms; case study: Tehran-Qazvin freeway. Geocarto International, 37, 4141-4157
Schmidt, K., Tous Ramon, N., & Schwerdt, M. (2018). Radiometric Accuracy and Stability of Sentinel-1A Determined using Point Targets. International Journal of Microwave and Wireless Technologies, 10
Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research, 54, 8558-8593
Sowter, A., Che Amat, A., Cigna, F., Marsh, S., Athab, A., & Alshammari, L. (2016). Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: results using the Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observation and Geoinformation, 52
Supreetha, B.S., Shenoy, N., & Nayak, P. (2020). Lion Algorithm-Optimized Long Short-Term Memory Network for Groundwater Level Forecasting in Udupi District, India. Applied Computational Intelligence and Soft Computing, 2020, 1-8
Taylor, R., Scanlon, B., Doell, P., Rodell, M., Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M.F.P., Macdonald, A., Fan, Y., Maxwell, R., Yechieli, Y., & Treidel, H. (2013). Ground water and climate change. Nature Climate Change, 3, 322-329
Torrence, C., & Compo, G. P. (1998). <bams-1520-0477_1998_079_0061_apgtwa_2_0_co_2.pdf>. Bulletin of the American Meteorological society 79, 61-78
Wada, Y., Beek, L., van Kempen, C., Reckman, J., & Bierkens, M.F.P. (2010). Global Depletion of Groundwater Resources. Geophysical Research Letters
Xiang, Z., Yan, J., & Demir, I. (2020). A Rainfall‐Runoff Model With LSTM‐Based Sequence‐to‐Sequence Learning. Water Resources Research, 56
Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2018). Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. Journal of Hydrology, 561, 918-929